Econ 802

First Midterm Exam

Greg Dow

October 15, 2021

All questions have equal weight. It is a good idea to read the entire exam before you start writing, and work first on the questions where you feel most confident.

- 1. Assume we have a perfectly competitive firm that maximizes profit. Provide a clear and detailed response to each of the following statements. Use math, graphs, or words as needed.
- (a) "If the firm has a single output and all of the input requirement sets V(y) are convex, then the firm's production possibility set Y must also be convex."
- (b) "If the price of an output rises then the quantity of that output must rise, and if the price of an input rises then the quantity of that input must fall."
- (c) "The firm chooses an output price equal to its marginal cost."
- 2. Consider the Cobb-Douglas production function $y = x_1^{\alpha} x_2^{\beta}$ where $x_1 \ge 0, x_2 \ge 0, \alpha > 0$ and $\beta > 0$. Output price is p > 0 and input prices are $w_1 > 0, w_2 > 0$.
- (a) Does the profit maximization problem always have a solution? If it does have a solution, can you be confident that the solution is unique? Explain.
- (b) Does the cost minimization problem always have a solution? If it does have a solution, can you be confident that the solution is unique? Explain.
- (c) Assume that the firm has constant returns to scale and the cost minimization problem has a solution. Calculate the cost shares $w_1x_1 / (w_1x_1 + w_2x_2)$ and $w_2x_2 / (w_1x_1 + w_2x_2)$ for an arbitrary output y > 0. Then give an economic interpretation of your results.
- 3. Acme Inc. has the production function $y = \max \{Ax_1 + Bx_2; Cx_1 + Dx_2\}$ where A, B, C, D are all positive constants with A > C and D > B. The firm must obey the non-negativity constraints $x_1 \ge 0$ and $x_2 \ge 0$.
- (a) Draw a graph in (x_1, x_2) space showing the set of points where $y = Ax_1 + Bx_2$ and the set of points where $y = Cx_1 + Dx_2$. Briefly explain your reasoning.

- (b) Draw a typical isoquant Q(y). Indicate the value of each intercept and the slopes of any line segments. Is the input requirement set V(y) convex? Is V(y) strictly convex? Justify your answers.
- (c) Give a complete description of the conditional input demand functions $x_1(w, y)$ and $x_2(w, y)$. Indicate the circumstances under which the firm chooses boundary or interior solutions, and say whether the solutions are unique.
- 4. A firm has two inputs and one output. In the short run $x_1 \ge 0$ is variable and $x_2 > 0$ is fixed. The firm's short run profit function is

 $\pi(p, w_1, w_2, x_2) = x_2[(1-\alpha)p^{1/(1-\alpha)} (\alpha/w_1)^{\alpha/(1-\alpha)} - w_2]$

- (a) Compute the input demand function $x_i(p, w_1, w_2, x_2)$. Does this function have the comparative static properties you would expect? Explain.
- (b) Compute the output supply function y(p, w₁, w₂, x₂). Does this function have the comparative static properties you would expect? Explain.
- (c) Suppose x₂ is variable in the long run. Sometimes the long run profit function is well defined and sometimes it is not. Discuss this issue carefully.
- 5. Here are some miscellaneous questions.
- (a) A firm has one input $y_1 \le 0$ and one output $y_2 \ge 0$. The prices are $p_1 > 0$ and $p_2 > 0$. The firm is observed in two time periods t = 1, 2 (use superscripts for time periods). Draw a graph in (y_1, y_2) space showing some observations for periods t = 1, 2 that <u>violate</u> the Weak Axiom of Profit Maximization. Explain.
- (b) Let $p = (p_1 ... p_n) > 0$ be a price vector and let $y = (y_1 ... y_n)$ be a production plan, where outputs are positive and inputs are negative. Let Y be the set of feasible production plans and let $\pi(p)$ be the profit function. Suppose $y^* \in Y$ has $py^* \ge py$ for all $y \in Y$. Prove mathematically that $\pi(tp) = t\pi(p)$ for all t > 0 and then explain verbally why this makes sense.
- (c) A firm has a production function y = f(x) where $x = (x_1 ... x_n) \ge 0$ are the inputs. The output price is p > 0 and the input prices are $w = (w_1 ... w_n) > 0$. Suppose that $x^* > 0$ satisfies both the first order and <u>sufficient</u> second order conditions for the profit maximization problem. Your friend says that x^* will also satisfy both the first order and <u>sufficient</u> second order conditions for the cost minimization problem when the firm must produce output $y^* = f(x^*)$. Is this true, false, or uncertain? Explain carefully.